A projectile is thrown into space so as to have maximum horizontal range $R$. Taking the point of projection as origin, the coordinates of the points where the speed of the particle is minimum are-
$(R, R)$
$\left( {R,\frac{R}{2}} \right)$
$\left( {\frac{R}{2},\frac{R}{4}} \right)$
$\left( {R,\frac{R}{4}} \right)$
A particle of mass $m$ is projected with a velocity $V$ making an angle of $45^o$ with the horizontal. The magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height $h$ is
A particle has initial velocity $(3\hat i + 4\hat j$$ ) $ and has acceleration $(0.4\,\hat i + 0.3\,\hat j)$ . Its speed after $10\,s$ is
The co-ordinates of a moving particle at a time $t$, are give by, $x = 5 sin 10 t, y = 5 cos 10t$. The speed of the particle is :
A body slides down a frictionless track which ends in a circular loop of diameter $D$, then the minimum height $h$ of the body in term of $D$ so that it may just complete the loop, is
A particle is projected with a velocity $v$ such that its range on the horizontal plane is twice the greatest height attained by it. The range of the projectile is (where $g$ is acceleration due to gravity)